_	
Data	
Date.	

1. Given each triangle, find the value of any missing side or angle "x" and "y"

2. In the diagram, AC = 2x, BC = 2x+1 and $\angle ACB = 30^{\circ}$. If the area of $\triangle ABC$ is 18, what is the value of "x"?

3. In the diagram, points A and B are located on islands in a river full of rabid aquatic goats. Determine the distance from A to B, to the nearest meter.

4. In determining the height, MN, of a tower on an island, two points A and B, 100 meters apart, are chosen on the same horizontal plane as "N". If $\angle NAB = 108^{\circ}$, $\angle ABN = 47^{\circ}$, and $\angle MBN = 32^{\circ}$, determine the height of the tower to the nearest meter.

5. In triangle ABC, $\angle ABC = 45^{\circ}$. Point "D" is on \overline{BC} so that $2 \cdot BD = CD$ and $\angle DAB = 15^{\circ}$. Find $\angle ACB$.

a) 54° b) 60° c) 72° d) 75° e) 90°

6. In the diagram, DC = DB, $\angle DCB = 15^{\circ}$, and $\angle ADB = 130^{\circ}$. What is the measure of $\angle ADC$?

7. In the diagram, the circle has radius $\sqrt{7}$ and centre O. Points D, B, and C are on the circle. If $\angle BOC = 120^{\circ}$ and DC = DB + 1, determine the length of DB.

a) 54°

In $\triangle ABC, BC = 4, AB = x, AC = x + 2$, and $\cos(\angle BAC) = \frac{x+8}{2x+4}$. Determine all possible values of "x".

8. In
$$\triangle ABC$$
, $BC = a$, $AC = b$, $AB = c$, and $a < \frac{1}{2}(b+c)$. Prove that $\angle BAC < \frac{1}{2}(\angle ABC + \angle ACB)$

9. In triangle ABC, $\angle ABC = 45^{\circ}$. Point "D" is on \overline{BC} so that $2 \cdot BD = CD$ and $\angle DAB = 15^{\circ}$. Find $\angle ACB$

e) 90°

d) 75°

c) 72°

10. Challenge: In the diagram, $2\angle BAC = 3\angle ABC$ and "K" lies on BC such that $\angle KAC = 2\angle KAB$. Suppose that BC = a, AB = b, AB = c, AK = d, and BK = x a) Prove that $d = \frac{bc}{a}$ and $x = \frac{a^2 - b^2}{a}$

b) Prove that $(a^2 - b^2)(a^2 - b^2 + ac) = b^2 c^2$

b) 60°